
and land cover classes. Owing to the very heterogeneous distribution of rain (Section 5.2),
the northern half of the domain is obviously much wetter than the southern half at the end
of the two-week period.

The value of the observations for retrieving the uncertain initial condition is obvious.
Without assimilating the brightness data, our best guess for the top node saturation is the
prior solution shown in the middle row of Figure 6.3, which is quite far from the truth. Once
we assimilate the brightness data, we are able to accurately estimate the initial condition.
With the initial condition being the dominant source of uncertainty in this experiment, we
also get good estimates of the entire saturation time series.

Figure 6.4 shows time series of the area average errors in the top node saturation and
in the soil temperature. The errors shown are root-mean-square errors (rmse) of the prior
and the estimated fields with respect to the true fields. In the legend we also indicate the
time average of the area average rmse’s. Note that the soil moisture errors are in terms of
the relative saturation, which varies between zero and one. In order to derive the errors in
terms of volumetric moisture percent, the numbers have to be scaled with the porosity. For
reference, the area average porosity is 0.46.

It is obvious that on average the estimated saturation fields are much closer to the truth
than the prior fields. This again confirms that there is enough information in the brightness
observations to infer the true initial condition for the saturation. Another interesting feature
of Figure 6.4 is how the error of the estimate varies with time. In particular, the error
decreases each time it rains. In other words, precipitation events tend to wipe out the
memory of the system including errors.

Note that the errors in the soil temperature estimates are unrealistically small, because
the experiment was not designed to test the soil temperature estimate thoroughly. In brief,
the soil temperature initial condition was assumed perfectly known, and there was only a
small uncertainty in the forcing of the soil temperature equation. These constraints lead to
an overly optimistic estimate of the soil temperature if compared to field conditions.

It is important to point out why the area average prior saturation error in Figure 6.4
decreases with time. This is due to the specific setup of Reference Experiment I. In this
particular setup, the initial condition becomes unimportant after some time because of the
nonlinearity of the system. If, for instance, we start from too wet an initial saturation,
then the evapotranspiration will also be higher than in the true case, therefore reducing the
difference between the prior and the true fields with time. Conversely, if we start too dry,
then evapotranspiration will be suppressed, and the prior will again edge towards the truth.
Since in this experiment we use the same model and the same micro-meteorologic forcings
for the generation of the (synthetic) true field and for the estimates, and since we only have
a small model error, we know that the prior, the estimate, and the true fields must finally
converge.

If this setup were to hold true in nature, we could indeed reasonably well estimate the
saturation at the final time without a complex assimilation algorithm, in fact we could
even do without the brightness data. In reality, however, we will of course never know the
model physics and the forcings well enough to rely on this naive idea. Nature will always be
much more complicated than our models, and we will need to estimate the initial condition
over and over again. The important point for the interpretation of Reference Experiment I
is therefore to look at how well we are doing in estimating the initial condition. Clearly,
we can much improve the prior trajectories and we can estimate the initial condition to
satisfying accuracy if we assimilate the brightness observations.

103



170 172 174 176 178 180 182
   0

0.02

0.04

0.06

0.08

 0.1

0.12

0.14

area average error (rmse)

to
p 

no
de

 s
at

ur
at

io
n 

er
ro

r 
  [

−
]

est (rmse = 0.014)  
prior (rmse = 0.096)

170 172 174 176 178 180 182
0.2

0.3

0.4

0.5

0.6

so
il 

te
m

pe
ra

tu
re

 e
rr

or
   

[K
]

day of year

est (rmse = 0.32K)  
prior (rmse = 0.37K)

Figure 6.4: Area average errors for Reference Experiment I. The root-mean-square
errors (rmse) of the prior and the estimated top node saturation and soil temperature
with respect to the (synthetic) true fields are shown. In the legend we also indicate
the temporal average of the area average rmse. Note that the soil moisture errors are
in terms of saturation. To derive the errors in terms of volumetric moisture percent,
the numbers have to be scaled with the porosity. The area average porosity is 0.46.
Obviously, the assimilation greatly improves the errors in the top node saturation over
the prior errors. Note that this experiment is not designed to test the soil temperature
estimate. Also note that the decrease in the prior rmse is an artefact of the setup of
Reference Experiment I (see text).
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6.1.3 Profile Estimation and Validity of the Land Surface Model

For all subsurface nodes, we get the same excellent estimates as for the surface node (see
Figure 6.14 for Reference Experiment II in Section 6.2.1). However, the fact that the profile
estimates are this good does not in itself mean that the profile information is necessarily
contained in the brightness observations. Indeed, recall that the shape of the initial con-
dition profile is fixed as hydrostatic in both the generation of the true solution and in the
assimilation. Moreover, in our ideal setup we use the same hydrologic model for the gener-
ation and for the estimation of the true fields. Finally, by using only a small model error
in the top flux boundary condition, we assume an almost perfect model. For these reasons
we naturally get excellent results for the profile estimates.

Whether subsurface information can in fact be retrieved from measurements related to
the states in the top few centimeters is mostly determined by the accuracy and the physical
realism of the land surface model. Without assimilating measurements that are directly
related to the subsurface states, the only way information can be propagated to the deeper
soil is via the hydrologic model. However, the time scales for the evolution of the profile are
longer than the intervals that could reasonably be covered by a single assimilation window.
Consequently, experiments to show the benefit of brightness assimilation for the estimation
of the saturation profile depend on the successful development of an operational framework
for soil moisture data assimilation.

Experiments to test the validity of the profile estimates could be verified with inde-
pendent observations of the subsurface states. But the meaning of the large-scale (surface
and subsurface) saturation is itself not obvious, considering that each pixel covers an area
the size of tens of square kilometers. Certainly one cannot expect to go out to the field
and verify the estimates with point measurements of the profile saturation. The large-scale
saturation profile may rather be understood as an aggregate measure of how much water is
stored at depth across the pixel. Such a vertically distributed and nonlinear reservoir may
be used to determine how the land surface interacts with the atmosphere. In other words,
the reservoir may tell us how much large-scale evapotranspiration and how much large-scale
infiltration can be sustained by the land surface.

But suppose that we assimilate brightness data for a long time in an operational fashion.
After enough time has elapsed, the posterior data residuals will show whether the subsurface
dynamics of the hydrologic model and the prior statistics are consistent with the data. If
this is the case, we have proof that the land surface model captures the multilayer subsurface
reservoir and its feedback onto the surface states with reasonable accuracy. We can then
interpret the saturation profiles in the manner suggested. If, on the other hand, the posterior
data residuals remain biased or have structure even after months of assimilation, the model
turns out not to be adequate in its description of land surface dynamics. In this case, we
would have learned something about land surface dynamics. The assimilation then prompts
us to go back and improve the hydrologic model accordingly.

6.1.4 Reduced Objective Function

Variational data assimilation is based on minimizing an objective function. Consequently,
it is important to closely examine the value of the objective. Figure 6.5 shows the prior
and the reduced objective as a function of the iteration on the tangent-linearization. In the
first iteration, the objective function decreases significantly from its prior value of 31,749 to
6705. Unlike in a gradient search, the objective function need not decrease monotonically

105



0 1 2 3 4 5

6*10^3

7*10^3

8*10^3

9*10^3

1*10^4

2*10^4

3*10^4

k
cg

 = 442 k
cg

 = 90 k
cg

 = 118 k
cg

 = 116 k
cg

 = 136

sum(k
cg

) = 902

J
red

 = 6151

 
<J

red
> = N

Z
 = 6144

 
std(J

red
) = 111

objective function

iteration number

Figure 6.5: Objective function versus iteration number for Reference Experiment I.
The reduced objective function after convergence is 6151. The number of data points
is 6144, which is also the expected value of the reduced objective function. The stan-
dard deviation of the reduced objective function is 111. The values of kcg indicate
the number of linear combinations of representer functions that needed to be eval-
uated during the conjugate gradient iteration of the indirect representer approach
(Chapter 8).
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with the number of iterations. In fact, upon closer inspection we see that the reduced
objective equals 6132 after the second iteration, 6120 after the third iteration, 6150 after the
fourth iteration, and finally 6151 after convergence. During the first iteration, the linearized
trajectory is adjusted to a first-cut estimate using all observations. Had the problem been
linear from the outset, we would have been done after this first iteration. During the
remaining iterations, the assimilation algorithm mainly ensures that the estimate obeys the
nonlinear state equation by making small corrections to the estimated trajectory. In other
words, during the early iterations the estimates are not yet dynamically consistent, and the
value of the objective function may decrease or grow while dynamic consistency is achieved
during the iteration process.

Note that the final reduced objective function Ĵ = 6151 compares well with the expected
value of J = 6144, which is equal to the number of data points (Section 2.3.6). The standard
deviation of the objective function in this case is σJ = 111. Since the errors were generated
synthetically with perfectly known covariances, and since the true fields were generated
with the same model that is used in the inversion, the reduced objective must by design
indicate consistency of the prior assumptions with the (synthetic) data. This is an important
validation step in the practical implementation of the algorithm.

6.1.5 Posterior Data Residuals

After the estimates have been derived, it is advisable to also take a close look at the posterior
data residuals. The data residuals are the difference between the estimates of the measured
quantities and the observations (Equation (2.32), Section 2.4). For an optimal estimate,
the residuals must not show spatial or temporal patterns, that is they ought to be white in
space and time. Moreover, their distribution should be close to normal with a mean of zero.
If all of the above holds true, we can assume with reasonable confidence that the estimation
process was optimal.

First, we examine the mean values (Figure 6.6). For all of the twelve individual residual
brightness images that have been assimilated, we find a mean whose 95% confidence interval
includes zero. But the mean for all residuals with a 95% confidence interval is 0.14±0.12K,
which does not include zero. Indeed, Figure 6.6 suggests that there is a slight positive bias.
The fact that the sample mean of all residuals is not compatible at 5% significance level
with the hypothesis of a zero mean could just be a spurious statistical fluctuation of the
given realization. But the effect is more likely to have its origin in the nonlinearities of the
hydrologic model. We will return to this point below when we test for normality. Note that
the residuals of Reference Experiment II do not show this bias (Section 6.2).

Before further investigating the posterior data residuals, it is best to standardize them.
Ideally, this is done with the posterior error covariance of the data residuals (2.37). However,
computational limitations prohibit the exact calculation of this quantity. We therefore
normalize with the sample standard deviation of the data residuals. The sample standard
deviation of the residuals of the individual images varies between 4.4K and 5.1K. The
sample standard deviation for all residuals is 4.8K. Recall that the measurement error
standard deviation is 5K.

Figure 6.7 shows the posterior data residuals for all twelve brightness images that have
been assimilated in the experiment. The residuals of each image are standardized with the
sample mean and standard deviation of the corresponding observation time. The residuals
show no obvious spatial structure, which indicates that the estimation algorithm works
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Figure 6.6: Sample mean values of the posterior data residuals for Reference Exper-
iment I. The mean residuals for the twelve images that have been assimilated are
shown together with the 95% confidence intervals. Even though the confidence inter-
val for each of the images includes zero, the confidence interval for the sample mean
of all images does not. This is likely due to the nonlinearities in the hydrologic model.
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Figure 6.7: Standardized posterior data residuals for Reference Experiment I for the twelve
brightness images that have been assimilated. The residuals of each image are standardized
with the sample mean and standard deviation of the corresponding observation time. The
residuals show no obvious spatial structure, which indicates that the estimation algorithm
works optimally.
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Figure 6.8: Standardized posterior data residuals for Reference Experiment I at three
observation pixels from different areas within the domain. The residuals have no
obvious temporal correlation, which indicates that the estimation algorithm works
optimally.

optimally. Likewise, Figure 6.8 shows the time series of the data residuals for three pixels
from different regions of the domain. The posterior data residuals also show no obvious
temporal correlation. A test for whiteness using the autocorrelation function [Jenkins and
Watts, 1968] confirms this result, but it must be noted that the short length of the time
series defies an accurate statistical assessment.

Finally, Figure 6.9 shows the sample cumulative distribution functions (cdf) of the stan-
dardized posterior data residuals for two brightness images. For comparison, we also show
the theoretical cumulative distribution function of the standard normal distribution. We can
test the posterior residuals for normality with the Kolmogorov-Smirnov test [Benjamin and
Cornell, 1970]. In brief, the Kolmogorov-Smirnov test compares the maximum difference
between the sample cdf and the assumed theoretical cdf.

For two out of the twelve observation times, we must reject the hypothesis of a normal
distribution of the data residuals at a 5% significance level. The upper panel of Figure 6.9
shows the sample cdf at the second observation time, for which we must reject the normality
hypothesis. In contrast, the lower panel shows the sample cdf of the residuals at the tenth
observation time. Here, the hypothesis of a normal distribution is not inconsistent with
the data. Since the model and the statistics used for the generation of the (synthetic)
true fields and for the estimation are identical in this experiment, and since the assimilation
algorithm used is optimal in the linear case, we must attribute the deviation from normality
to the nonlinear effects. Given the strong nonlinearities in the land surface model and in
the measurement operator, it is not surprising that the posterior data residuals are not
perfectly normally distributed.
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